Functional cis-regulatory genomics for systems biology.
نویسندگان
چکیده
Gene expression is controlled by interactions between trans-regulatory factors and cis-regulatory DNA sequences, and these interactions constitute the essential functional linkages of gene regulatory networks (GRNs). Validation of GRN models requires experimental cis-regulatory tests of predicted linkages to authenticate their identities and proposed functions. However, cis-regulatory analysis is, at present, at a severe bottleneck in genomic system biology because of the demanding experimental methodologies currently in use for discovering cis-regulatory modules (CRMs), in the genome, and for measuring their activities. Here we demonstrate a high-throughput approach to both discovery and quantitative characterization of CRMs. The unique aspect is use of DNA sequence tags to "barcode" CRM expression constructs, which can then be mixed, injected together into sea urchin eggs, and subsequently deconvolved. This method has increased the rate of cis-regulatory analysis by >100-fold compared with conventional one-by-one reporter assays. The utility of the DNA-tag reporters was demonstrated by the rapid discovery of 81 active CRMs from 37 previously unexplored sea urchin genes. We then obtained simultaneous high-resolution temporal characterization of the regulatory activities of more than 80 CRMs. On average 2-3 CRMs were discovered per gene. Comparison of endogenous gene expression profiles with those of the CRMs recovered from each gene showed that, for most cases, at least one CRM is active in each phase of endogenous expression, suggesting that CRM recovery was comprehensive. This approach will qualitatively alter the practice of GRN construction as well as validation, and will impact many additional areas of regulatory system biology.
منابع مشابه
Discovering structural cis-regulatory elements by modeling the behaviors of mRNAs
Gene expression is regulated at each step from chromatin remodeling through translation and degradation. Several known RNA-binding regulatory proteins interact with specific RNA secondary structures in addition to specific nucleotides. To provide a more comprehensive understanding of the regulation of gene expression, we developed an integrative computational approach that leverages functional ...
متن کاملComputational prediction of cis-regulatory modules from multispecies alignments using Galaxy, Table Browser, and GALA.
One major goal of genomics is to identify all the functional sequences in genomes, including sequences that regulate the expression of genes. Sequence conservation is a good, albeit imperfect, guide to these functional elements. We describe how to use publicly available servers (Galaxy, the UCSC Table Browser, and GALA) to find genomic sequences whose alignments (from blastZ and multiZ) show pr...
متن کاملFrom functional genomics to systems biology.
This review discusses the talks presented at the third EMBL Biennial Symposium, From functional genomics to systems biology, held in Heidelberg, Germany, 14-17 October 2006. Current issues and trends in various subfields of functional genomics and systems biology are considered, including analysis of regulatory elements, signalling networks, transcription networks, protein-protein interaction n...
متن کاملPractical computational methods for regulatory genomics: a cisGRN-Lexicon and cisGRN-browser for gene regulatory networks.
The CYRENE Project focuses on the study of cis-regulatory genomics and gene regulatory networks (GRN) and has three components: a cisGRN-Lexicon, a cisGRN-Browser, and the Virtual Sea Urchin software system. The project has been done in collaboration with Eric Davidson and is deeply inspired by his experimental work in genomic regulatory systems and gene regulatory networks. The current CYRENE ...
متن کاملAdaptive Thresholding for Reconstructing Regulatory Networks from Time Course Gene Expression Data
Discovering regulatory interactions from time course gene expression data constitutes a canonical problem in functional genomics and systems biology. The framework of graphical Granger causality allows one to estimate such causal relationships from these data. In this study, we propose an adaptively thresholding estimates of Granger causal effects obtained from the lasso penalization method. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 8 شماره
صفحات -
تاریخ انتشار 2010